Linear Concurrent Constraint Programming over Reals
نویسنده
چکیده
We introduce a constraint system LC that handles arithmetic constraints over reals within the linear concurrent constraint programming (lcc) framework. This approach provides us with a general, ex-tensible foundation for linear programming algorithm design that comes with a (linear) logical semantics. In particular, it allows us to build a `glass-box' version of the (constraint solver) simplex algorithm by deen-ing (monotone) cc ask and tell agents over a higher-level constraint system as lcc(LC) programs. We illustrate at the same time the use of the lccframework as a non-trivial concurrent algorithm speciication tool.
منابع مشابه
First-order Queries on Finite Structures over the Reals
We investigate properties of finite relational structures over the reals expressed by first-order sentences whose predicates are the relations of the structure plus arbitrary polynomial inequalities, and whose quantifiers can range over the whole set of reals. In constraint programming terminology, this corresponds to Boolean real polynomial constraint queries on finite structures. The fact tha...
متن کاملFirst order queries on nite structures over the reals
We investigate properties of nite relational structures over the reals expressed by rst order sentences whose predicates are the re lations of the structure plus arbitrary polynomial inequalities and whose quanti ers can range over the whole set of reals In constraint programming terminology this corresponds to Boolean real polyno mial constraint queries on nite structures The fact that quanti ...
متن کاملConstraint Satisfaction and Semilinear Expansions of Addition over the Rationals and the Reals
A semilinear relation is a finite union of finite intersections of open and closed half-spaces over, for instance, the reals, the rationals, or the integers. Semilinear relations have been studied in connection with algebraic geometry, automata theory, and spatiotemporal reasoning. We consider semilinear relations over the rationals and the reals. Under this assumption, the computational comple...
متن کاملConcurrent Cooperating Solvers over Reals
Systems combining an interval narrowing solver and a linear programming solver can tackle constraints over the reals that none of these solvers can handle on their own. In this paper we introduce a cooperating scheme where an interval narrowing solver and a linear programming solver work concurrently. Information exchanged by the solvers is therefore handled as soon as it becomes available. Mor...
متن کاملOn Translating MiniZinc Constraint Models into Fitness Functions for Evolutionary Algorithms: Application to Continuous Placement Problems
MiniZinc is a solver-independent constraint modeling language which is increasingly used in the constraint programming community. It can be used to compare different solvers which are currently based on either constraint programming, Boolean satisfiability or mixed integer linear programming. In this paper we show how MiniZinc models can be compiled into fitness functions for evolutionary algor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998